159 research outputs found

    Methodological and empirical progress and challenges in integrated assessment of agricultural systems and policies

    Get PDF
    In this contribution we first present a methodology for integrated assessment of agricultural systems (SEAMLESS Integrated Framework), illustrate its application in an integrated assessment of high commodity prices and then discuss its flexibility and limitations. From there we take a broader view and reflect on key scientific and empirical questions with respect to the development of research tools for the integrated assessment of agricultural systems.agricultural systems, integrated assessment, modelling, Agricultural and Food Policy, Farm Management,

    Training materials for different categories of users

    Get PDF
    Agricultural and Food Policy, Environmental Economics and Policy, Farm Management, Land Economics/Use, Production Economics, Teaching/Communication/Extension/Profession,

    Fertiliser use and soil carbon sequestration: Key messages for climate change mitigation strategies

    Get PDF
    Reducing greenhouse gas (GHG) emissions and increasing soil or biomass carbon stocks are the main agricultural pathways to mitigate climate change. Scientific and policy attention has recently turned to evaluating the potential of practices that can increase soil carbon sequestration. Forty percent of the world’s soils are used as cropland and grassland, therefore agricultural policies and practices are critical to maintaining or increasing the global soil carbon pool. This info note explains the current understanding of the impact of mineral fertiliser use on soil carbon sequestration as a mitigation strategy in agriculture. The science and understanding on soil carbon sequestration and mitigation is still emerging, especially in tropical regions. Taking this into consideration, this info note discusses related effects of fertiliser use on climate change mitigation, such as nitrous oxide (N2O) and carbon dioxide (CO2) emissions from nitrogen fertiliser use and production, and the potential effects of mineral fertiliser use on land use change

    Integrated assessment of the EU’s greening reform and feed self-sufficiency scenarios on dairy farms in Piemonte, Italy

    Get PDF
    Specialised dairy farms are challenged to be competitive and yet respect environmental constrains. A tighter integration of cropping and livestock systems, both in terms of feed and manure flows, can be beneficial for the farm economy and the environment. The greening of the direct payments, which was introduced in the European Union’s greening reform in 2013, is assumed tostimulate the transition towards more sustainable systems. The aim of this study was to quantitatively assess the impacts of greening policies on important economic and environmental indicators of sustainability, and explore potential further improvements in policies. The Farm System SIMulator (FSSIM) bioeconomic farm model was used to simulate the consequences of scenarios of policy change on three representative dairy farms in Piedmont, Italy, i.e., an ‘intensive’, an ‘extensive’, and an ‘organic’ dairy farm. Results showed that in general, there is a large potential to increase the current economic performance of all of the farms. The most profitable activity is milk production, resulting in the allocation of all of the available farm land to feed production. Imposing feed self-sufficiency targets results in a larger adaptation of current managerial practice than the adaptations that are required due to the greening policy scenario. It was shown that the cropping system is not always able to sustain theactual herd composition when 90% feed self-sufficiency is imposed. Regarding the greening policies, it is shown that extensive and organic farms already largely comply with the greening constrains, and the extra subsidy is therefore a bonus, while the intensive farm is likely to sacrifice the subsidy, as adapting the farm plan will substantially reduce profit. The introduction of nitrogen (N)-fixingcrops in ecological focus areas was the easiest greening strategy to adopt, and led to an increase in the protein feed self-sufficiency. In conclusion, it is important to note that the greening policy in its current form does not lead to reduced environmental impacts. This implies that in order to improveenvironmental performance, regulations are needed rather than voluntary economic incentives

    Fertiliser use and soil carbon sequestration: trade-offs and opportunities

    Get PDF
    Current initiatives to store carbon in soils as a measure to mitigate climate change are gaining momentum. Agriculture plays an important role in soil carbon initiatives, as almost 40% of the world’s soils are currently used as cropland and grassland. Thus, a major research and policy question is how different agricultural management practices affect soil carbon sequestration. This working paper focuses on the impact of mineral fertiliser use on soil carbon sequestration, including synergies with the use of organic inputs (for example crop residues, animal manure) and trade-offs with greenhouse gas (GHG) emissions. Findings from scientific literature show that fertiliser use contributes to soil carbon sequestration in agriculture by increasing biomass production and by improving carbon:nitrogen (C:N) ratios of residues returned to the field. The use of mineral fertiliser can also support the maintenance of carbon stocks in non-agricultural land if improved fertility on agricultural land reduces demand for land conversion. Combining organic inputs with mineral fertiliser seems most promising to sequester carbon in agricultural soils. Increasing nutrient inputs (either organic or mineral fertilisers) may however lead to trade-offs with GHG emissions such as N2O. Improving the agronomic nitrogen use efficiency of nutrient inputs (i.e., additional grain yield per kg N applied) can alleviate this trade-off. While soil carbon sequestration can benefit soil fertility under some conditions and compensate for some GHG emissions related to agriculture (first assessments indicate up to 25% of the emissions related to crop production, depending on region and cropping system), it seems unlikely it can compensate for GHG emissions from other economic sectors. If soil carbon sequestration is a policy objective, priorities should be areas with higher storage potential (wetter and colder climates) and/or regions where synergies with soil fertility and food security are likely to occur (for example farming systems in tropical regions, on sandy soils and/or when cultivating more specialized crops). However, regions with the highest storage potential most likely do not overlap with regions where the largest benefits for soil fertility and food security occur

    Beyond the plot: technology extrapolation domains for scaling out agronomic science

    Get PDF
    Ensuring an adequate food supply in systems that protect environmental quality and conserve natural resources requires productive and resource-efficient cropping systems on existing farmland.Meeting this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and scaling-out of currently available and emerging technologies. Here we develop a global spatial framework to delineate ‘technology extrapolation domains’ based on key climate and soil factors that govern crop yields and yield stability in rainfed crop production. The proposed framework adequately represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn Belt. It also facilitates evaluation of cropping system performance across continents, which can improve efficiency of agricultural research that seeks to intensify production on existing farmland. Populating this biophysical spatial framework with appropriate socio-economic attributes provides the potential to amplify the return on investments in agricultural research and development by improving the effectiveness of research prioritization and impact assessment

    Developing a running prototype of a bio-economic farm model for a trade-off analysis of different nutrient management options for maize cultivation in East-Africa

    Get PDF
    Considering projected population trends, food requirements in East Africa will drastically increase in the coming decades (van Ittersum et al., 2016). One way to ensure supply will meet demand is by raising crop yields in the region. In East Africa, agricultural yields still have large potential to increase due to the large gaps between actual and potential yields. A recent study has shown that intensification of agriculture in regions with low current yields (such as in East Africa) is an option to reduce greenhouse gas emissions by avoiding or reducing agricultural land expansion into forests and/or grasslands, thus preserving carbon stocks (Van Loon, Hijbeek, ten Berge and Van Ittersum 2018, in prep). This is however only valid if higher yields are obtained with highly efficient use of fertilisers. For a successful implementation of such climate smart agricultural intensification, improved nutrient management options need to be economically viable for farmers in East Africa. It is however often unclear under which conditions agricultural intensification is beneficial for farmers’ income in sub saharan Africa (Marenya and Barrett, 2009; Place et al., 2003; Sheahan et al., 2013). Besides a number of good agricultural practices (such as improving planting densities and sound crop protection measures), farmers need to apply more nutrients to intensify production. The amounts of additional nutrients required represents the ‘nutrient gap’ between current nutrient applications and the total amount of nutrients removed from fields with increased yields (de Vries et al., 2017). Farmers can use several nutrient management options to close the nutrient gap (e.g. use mineral or organic fertilisers, split application of fertilisers, combine with local or hybrid seeds). The nutrient management option a farmer chooses not only affects his or her nutrient use efficiency (how much of the applied nutrients are recovered by the crop), but also his or her income generation and the contribution to greenhouse gas emissions. Some practices might be most beneficial for farmers’ income, but have a larger contribution to greenhouse gas emissions. Others might have the reversed effect. So far, trade-offs and/or synergies between farmers’ income and greenhouse gas mitigation as a function of nutrient management options have not been systematically assessed. Additionally, it is uncertain how such trade-offs or synergies might evolve over time, in cases where soil carbon and nutrient pools respond over longer time frames to the management exposed. We therefore address the following question: Can certain nutrient management practices be identified which are beneficial for both climate change mitigation and for farmers’ income in East Africa? The aim of this report is to develop a running prototype of a bio-economic model which can be used to assess trade-offs between yields, farmers ‘income and greenhouse gas emissions in function of different nutrient management options, both on the short and the long term. The proposed model will focus on nitrogen (N) as the main limiting nutrient, which is also highly relevant for greenhouse gas emissions (i.e. N2O). The model will be useful for R&D investors, agri-business (including fertiliser companies) and government agencies for ex ante assessment of specific nutrient management options

    Spatial frameworks for robust estimation of yield gaps

    Get PDF
    Food security interventions and policies need reliable estimates of crop production and the scope to enhance production on existing cropland. Here we assess the performance of two widely used ‘top-down’ gridded frameworks (Global Agro-ecological Zones and Agricultural Model Intercomparison and Improvement Project) versus an alternative ‘bottom-up’ approach (Global Yield Gap Atlas). The Global Yield Gap Atlas estimates extra production potential locally for a number of sites representing major breadbaskets and then upscales the results to larger spatial scales. We find that estimates from top-down frameworks are alarmingly unlikely, with estimated potential production being lower than current farm production at some locations. The consequences of using these coarse estimates to predict food security are illustrated by an example for sub-Saharan Africa, where using different approaches would lead to different prognoses about future cereal self-sufficiency. Our study shows that foresight about food security and associated agriculture research priority setting based on yield potential and yield gaps derived from top-down approaches are subject to a high degree of uncertainty and would benefit from incorporating estimates from bottom-up approaches

    Water productivity of rainfed maize and wheat: A local to global perspective

    Get PDF
    Water productivity (WP) is a robust benchmark for crop production in relation to available water supply across spatial scales. Quantifying water-limited potential (WPw) and actual on-farm (WPa) WP to estimate WP gaps is an essential first step to identify the most sensitive factors influencing production capacity with limited water supply. This study combines local weather, soil, and agronomic data, and crop modeling in a spatial framework to determine WPw and WPa at local and regional levels for rainfed cropping systems in 17 (maize) and 18 (wheat) major grain-producing countries representing a wide range of cropping systems, from intensive, highyield maize in north America and wheat in west Europe to low-input, low-yield maize systems in sub-Saharan Africa and south Asia. WP was calculated as the quotient of either water-limited yield potential or actual yield, and simulated crop evapotranspiration. Estimated WPw upper limits compared well with maximum WP reported for field-grown crops. However, there was large WPw variation across regions with different climate and soil (CV=29% for maize and 27% for wheat), which cautions against the use of generic WPw benchmarks and highlights the need for region-specific WPw. Differences in simulated evaporative demand, crop evapotranspiration after flowering, soil evaporation, and intensity of water stress around flowering collectively explained two thirds of the variation in WPw. Average WP gaps were 13 (maize) and 10 (wheat) kg ha−1 mm−1, equivalent to about half of their respective WPw. We found that non-water related factors (i.e., management deficiencies, biotic and abiotic stresses, and their interactions) constrained yield more than water supply in ca. half of the regions. These findings highlight the opportunity to produce more food with same amount of water, provided limiting factors other than water supply can be identified and alleviated with improved management practices. Our study provides a consistent protocol for estimating WP at local to regional scale, which can be used to understand WP gaps and their mitigation
    • 

    corecore